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Abstract

A new approach to skyline-based terrain matching is described. It is based on selecting the longest

of the minimum-distance vectors between corresponding curves from two sets of data, and is thus called

"max-min matching." Ill the terrain lnatching case, one s_,t. of curves is a set of skylines generated by an

autonomous vehicle by its 3-D visual sensors, and the other is generated from a terrain map database.

The algorithm is being developed to perform skyline-based terrain matching for autonomous vehicle

navigation in an unstructured environment such a.s tile surface of Mars, but the approach is suitable

for other types of scenes as well. Initial experiments are doscribed, which gave promising results for the

matching technique.

1 Introduction

The task of terrain matching is to check or refine an autonomous vehicles's estimate of its own vantage,

that is, position and orientation of its visual sensors with respect to a "global map" of the terrain [1, 2, 3, 4].

The terrain matching task in various contexts has also been referred to as robot localization [5] and position
estimation [6, 7].

Terrain matching is one of the basic subtasks of autonomous vehicle navigation. Once the vantage
is established, the vehicle may perform its path selection based on its current position, the information
from both the global map and its sensors, and whatever instructions have been issued to the vehicle. The

autonomous navigation process for a roughly mapped, unstructured environment is further described in

[2,3].

Prior to terrain matching, the vehicle must make sensol'v measurements of its environment. In our case,

it uses stereo vision or laser ranging to develop a local, 3-D map of the terrain, and extracts the skylines,

or occluding contours from those measurements. The skylines from sensory measurements, called "local

skylines," are space curves which can be expressed in parametric form with azimuth as the independent

variable, and horizontal distance and vertical height as functions of the azimuth.

Similar curves called "global skylines" are generated from the global map based on an a priori estimate

of the vantage[l]. Skyline based terrain matching uses tho local and global skylines as features that are

common to both the local and global maps. It compares the two sets of skylines in order to relate the

local map to the global nlap and thus determine the vantage.

The comparison between a local skyline and global skyline consists of two main steps:

*Research performed for the Center of Intelligent Robotic Sytems for Space Exploration at Rensselaer Polytechnic Institute
under NASA contract #NAGW-133a.



1. Find the longest of the minimum-distance vectors between the curves. This is called the max-min.

2. Using the max-min to determine tile point-by-point correspondence between the curves, compute

the average vector difference between corresponding points. This average estimates the error in the
previous vantage estimate.

The vantage estimate is then updated by the estimate of"its error.

Section 2 of this report describes the terrain matching problem in more specific terms. Section 3

describes the fundamental ideas behind the new approach. Section 4 describes the test curves used in our

initial experiments, and the cubic splines used to represent them. Sections 5 and 6 describe the max-min

and averaging computations, respectively. Section 7 concludes the report.

2 Statement of the problem

The vantage consists of six parameters: three for translation (xv, Yv, and zv), and three for orientation

(yaw, pitch, and roll). The translational vantage parameters represent the true location of the sensors,

with respect to a global coordinate system, (._:g,yg,z g) fixed to the terrain. A local coordinate system,

(x t, yt, zt), is fixed to the vehicle at its (true) vantage point. In this work, the orientation parameters of

the vantage are assumed known; for simplicity, we assume that the vehicle's yaw, pitch, and roll arc zero,
so that the local and global coordinate systems are related by a mere translation.

The goal of the algorithm is to compute accurate :_,., /]_, and z2v, estimates of the unknown vantage
parameters. Since the algorithm is iterative, 2, i, y_i, and _oi are the vantage estimates after the ith

iteration. :/o, _]o, and 5o are based on a previous position estimate of the vehicle, and on the dead

reckoning path which it has approximately followed from l hat position.

2.1 Problem description in detail

A coordinate frame called the "star" (,) system originates at (3fvi,yvi,fv i) in global coordinates; that

is, at the estimated vantage point. (See Figure 1.) It is emphasized that the origin of the star system,
(x-i,_]i,£i) is known exactly, but that of the local system, (xv,y,,z.) is not. Denote the error in the

_Ti _ i _i ).vantage estimate after i iterations as b 0, Yo, _0 •

^ • .2
Xv ---- Xv z q-"_:0

: + :_Z, U -- z'O Z

(1)

The task of the algorithm in the ith iteration is to compute X_0 i-1, ?]0i-1, and 20i-1, the estimates of
the previous error. From these values, the vantage estimate is updated as:

g':v i = _,v i-1 + .t:O i-1

Yt,' = ?Jr t-I Jr fro '-1 (2)

i = z:i-i _oi_lzv +

The iteration continues until sufficient accuracy has been obtained in the vantage estimate.

^ . . / ,_.0/"We now turn to the question of computing Xo', yo , and From here forward, the i superscripts

will be dropped; it may be assumed that we are in the i + lth iteration, calculating values with the i

superscript. For instance, we are given ._o, _]o, and z:,°, and in the first iteration are computing io °, y'o°,
and _o°.

To compute the vantage error estimates, skyline curve data from two sources are used:



1. A set of "local skylines"extractedfrom the visual sensorson the vehicle. Thesecurvedata are
expressedin cylindricalcoordinatesaboutthe localcoordinatesystem.

2. A setof "globalskylines"whichareexpectedto bevi._iblefrom theestimatedvantage,aregenerated
froma rough,globalmapof theterrain. Theglob_d._kylines are expressed in cylindrical coordinates

about the star coordinate system. A method of geuerating global skylines from a global map is

described in [1].

The global skylines are taken as estimations of the local skyhnes in 3-D space, in spite of two differences:

1. Errors in the global map cause the actual (local) and predicted (global) skylines to differ.

2. Different vantages cause different sets of skylines _o result, even if the sources of information are

identical, and so an error in the vantage would cause _.he global skylines to differ from the local even

if the map was perfect.

These differences are ignored. If the vantage estimate izal,roves in each iteration of the algorithm, then

the differences resulting from the second cause listed will diminish.

In order to perform computations with curves which c¢,me from two different coordinate systems, the

transformation between which (i.e. the translation of .co. y0, and z0) is not known, a third coordinate

system is introduced: a "dagger" coordinate system which is coincident with the star coordinate system.

The curves expressed in dagger coordinates are translated copies of the local skylines; the relationship of

the dagger curves to the dagger system, shown in Figurt, ?, is identical to that of the local curves to the
local coordinate frame.

An additional coordinate system will be used, in graphically evaluating the resulting £0, go, and 20

from the algorithm: the double-dagger (++) system is yet another translated version of the local system

and local skylines. This system originates at the global coordinates (x'_ + x0, _]o+ Y0, zo + zo), shown in

Figure 3, which could also be called: the vantage estimate for the next iteration; the "star" origin for

the next iteration; or the post priori vantage estimate for this iteration. Plots of the star system and

the double-dagger system together demonstrate how well _he algorithm "matched" the local and global

skylines.

2.2 Scope of experiments

The experiments described in this report invotved a sil_gl_, pair of corresponding curves, instead of two

sets of curves representing two versions of an enth'e scelle. This eliminated the major step of evaluating
the curve correspondence [1] between the two sets of cul'x'_.

In addition, these curves were not generated from a glob;d map or from visual data; for testing purposes,

they were simply derived from an analytical function described in Section 4.1. The two main differences

between the curves, listed above, thus do not exist for lh,, test case. The portions of the curves which

did correspond, matched almost exactly in the result- the error that did appear arose from the spline

interpolation, and was only slight.

The test began with data for the star curve, represenl ilkg the global skyline for an "incorrect" vantage

estimate; and for the dagger curve, representing a local ,_k.vline already translated from its unknown but

true position, to the known but incorrect vantage estimate. It proceeded to calculate £0, _]0, and z"0 so

that the local skyline in the double-dagger position (rel ral,slated by the inverse error estimate) matched
the star curve.

Only one "iteration" of the technique is performed. (Tire method performs sufficiently well under the

test conditions that only one iteration is necessary for al, _ccurate result.)



2.3 Definitions

Severalconceptswill be usedfor relatingpoints on onecurve to points on the other throughout this
report. Thefirst and andmostimportantis that of a corresponding point. Two points on different curves

are said to correspond if they represent the same physical point, in this case on a terrain.

A discrepancy is defined as the shortest vector from a specified point on one curve, to the other curve.

A normal-to-intersect vector is a path along the normal line through some point on one curve, to the

normal line's intersection with the other curve. For normal curves from some points, this intersection does

not exist. The distance along the normal line, in the direction which immediately increases the radius

of the line from the origin, is called e; a normal-to-intersect from an "inner curve" (smaller p(6)) to an

"outer curve" (larger p(0)) has a positive e, and a normal-to-intersect from an "outer curve" to an "inner

curve" has a negative e.

A discrepancy vector or normal-to-intersect vector goes from one curve to another. The point on the

curve, where the vector is computed from shall be called ils base point, and the point on the other curve

which the vector points to shall be called its terminating point. The curves may also be called the base

curve and terminating curve, respectively.

Throughout this report, each cylindrical coordinate system is related to its corresponding rectangular

coordinate system with 0 measured counter-clockwise from the x-axis; p as the length of the horizontal

projection; and z the same as the rectangular z. Mathematically,

0 = atan2(y.x)

p = vg+:) (a)
z _--- z

where the atan2(y, x) function is a special version of arctan(y/x), which insures that the resulting angle

is in the appropriate quadrant.

3 The max-min principle

We begin our development with the max-rain principle 1, which applies to the special case of two curves

which are completely identical except for a translation between them. In this special case, every point

on one curve has a corresponding point on the other. Laler we will relax this restriction, to allow for a

pair of curves whose end points might not correspond, and will have to consider possible exceptions to

the original principle. The max-rain principle is as follows:

Max-min Principle: The minimum di._tance from any point on a curve, to a translated version of the

same curve, is less than or equal to the length of th_ translation.

This is justified as follows: there is at least one point-- the corresponding point-- on the translated curve

which will be the length of the translation away from a point on the original curve. There may also

be other points on the translated curve which are closer than the corresponding point. Therefore, the

minimum distance will be less than or equal to the length of the actual translation.

We postulate that the longest of these minimum-distance vectors, called the max-min, will come close

to the actual translation between the curves. (There are certain conditions under which the discrepancy is

guaranteed to equal the translation or the negative of the translation, although we have not yet enumerated

them.) The max-min could be used an estimate of the translation itself, but in fact only its direction is

XThe term "max-min" in this context has nothing to do with max-nfin game theory in the field of artificial intelligence.
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used,andthecomponentof translationin that directiol_is calculatedwith anaveragingschemedescribed
in Sect.6.

Calculatingthediscrepanciesmeansfindingtheminimuin (Euclidean)distancebetweensomepoint (on
onecurve)to anothercurve. With piece-wisepolar cubiccurves(i.e. cubicsplinesin polar coordinates)
it is difficult to computethe discrepancies.Numericallyit is expensive,becausemultiple minima and
maximaof distancefrom the point mayexistalongtile curve,and in polarspacethe wholecurvemay
haveto be searched.However.it is rather straightforwardto numericallycomputenormal-to-intersect
distances,e, from one curve to another curve, and these distances are in most cases good substitutes for

the discrepancies. Whereas a discrepancy vector should be normal to its terminating curve (marking a

local minimum in distance), a normal-to-intersect vector is normal to its base curve. By finding the point

where a normal line of one curve intersects the other curve, we in most cases obtain a discrepancy vector

in the reverse direction. (In such cases, the normal-to-iltWrsect vector marks the shortest path from its

terminating point to its base curve.) For normM-to-intersects, the search for each e is along a line, and is
thus numerically quite straightforward.

Insofar as the normal-to-intersect measurements substit _tte for discrepancy measurements, the principle

above still applies. However, to maximize our chances tha_ at least one e is approximately as long as the

actual translation, we make normal-to-intersect measurenwrlts in both directions-- from the original curve
to the translated curve, and vice-versa. In short, we prol)ose to use the maximum normal-to-intersect

measurement, to estimate the direction of the tra nslatioJt.

3.1 Max-min exceptions

This section highlights two kinds of exceptions to the max-rain principle: exceptions that are possible due

to non-corresponding endpoints, and exceptions possible clue to using normal-to-intersect measurements
instead of discrepancy measurements.

When matching skylines, we must be prepared for tho endpoints of the curves to not correspond to

each other. That is, while the curves must share some cotlmmn, corresponding portion of a skyline, one

curve may be "longer" than the other on either or both ends. (If the endpoints were known to correspond

to each other, then the translation could be easily calcul,t,,d from endpoints only.) In fact, the endpoints

are the most sensitive parts of the skylines (often located +_tvisual inflection points), and will most often

not correspond to eachother due to data noise and vant+lge error.

If discrepancies themselves were being measured (as opl)osed to normal-to-intersects), then discrepan-

cies near noncorresponding endpoints could be longer that+ the translation between the curves, and have

little to do with the direction or translation between the curves; this could disrupt the entire algorithm.

A way to avoid this case would be to discard ally discrep;_tlcies whose terminating point is an endpoint of

its terminating curve. A nearly equivalent condition would require the discrepancy vector to be normal

to the terminating curve at its terminating point, but m,,r,,ly comparing it to the endpoints is easier.

Even following this rule still allows for cases, for exaJt/l_le see Figure 4, where noncorresponding end-

points can cause extra-long discrepancies. Such cases, however, are expected to be extremely rare, and
have not been further addressed.

A different type of exception is made possible by usi_lg normal-to-intersect measurements in place of

discrepancy measurements. This exception, illustrated iJl Figure 5, may result from a noisy base curve,
or from a pair of curves with a distinct irregularity.

The interpolation scheme is typically smooth (C-2 coil tiituous), and filtering techniques may be applied

in the future as necessary, in order to prevent noise fi'¢_J_causing this type of exception. The case of a

distinct irregularity-- referring in the right-hand side of Figure 5 to the "bump" common to both curves--

may demand more attention in the future. To a humat_ _tatching the curves intuitively, an irregularity

OF POOR QUALITY



common to both curves provides valuable clues; an autonomous matching scheme should be able to at

least tolerate, if not thrive upon, such potentially valuable information. (The discrepancy measurements

do in fact take advantage of such an irregularity, because the peak in discrepancy length, taken in a certain

direction, is very sharp.)

One way to handle this exception may be to make sure that the distance from a normal-to-intersect's

terminating point to its base curve is in fact a local minimum at its base point compared to its neighbors

on the base curve, and not a local ma.ximum. Merely the fact that it is normal to its base curve allows for

either a maximum or a minimum, but to take the place of a "reverse discrepancy" it must be a minimum.

A test for this compares the curvature of the base curve _t the base point, to the measured E, but this

test was not implemented for the experiments described ill this paper.

4 Interpolation with natural cubic splines

The algorithm receives as input two curves-- a dagger curve and a star curve-- and each is represented

as a sequence of points in cylindrical coordinates. Ill our experimental case, the sequences of points

describing the curves are generated fi'om analytic functions described below; in the future, the curve data

will come from a global map-based skyline generator described in [1], or even real visual data. Regardless

of the source, the algorithm's first step is to interpolate each sequence of points into a smooth curve, using

natural cubic splines. The splines parameterize p and z separately in terms of 8, since 0 is the natural

abscissa for visual data oll a 2½-D unstructured terrain 2.

Once the splines were calculated, the curves were available as continuous functions, pt(Ot), zt(Of)

for the dagger curve, and p*(0*), z*(O*) for the star curve. The interpolated functions were only defined

between the endpoints of the curves, and the discrete samples from which the splines were interpolated

became transparent to the algorithm.

4.1 Experimental input

In our initial experiments we used the following analytical functions for the dagger curve:

psp(O) = poe _0

z,p(O) = z_cos[1.5(0-45°)]

where p_, a, and z_ are constants. The analytic functions were sampled at even increments of 0$ over a

certain range, using pt(0t) = p,p(gt) and zt(O$) = z,v(Ot ); these discrete points were fed into the cubic

spline generator described in the next section.

The experimental star curve consisted of the same analytical function, sampled across a different range

of 0 than the dagger curve, then translated by an x0, Y0. and z0. A different range was used, so that the

endpoints of the two curves did not correspond to each other; the translation parameters were the values

which the algorithm was designed to estimate. The star points were generated for discrete values of 0i as
follows:

( psp(Oi)sinOi + Yo l
0; = arctan + "o/

P7 = _/(p,p(Oi)sin Oi + yo) "2+ (p_p(Oi)cosOi + Xo) 2

"i = z_p(Oi)+zo

2A 2½-D unstructured terrain refers to a terrain on which the ground height is an arbitrary, continuous function of
horizontal position. Caves or overhangs violate such a terrain model.



The star curve's discrete samples were likewise interpolated with cubic splines.

Figure 6 shows the experimental star and dagger curves, with the discrete points from which they

were generated highlighted, and the spline interpolation described in the next section already performed.
For these curves, P0 = 10.0, a = 0.4, and z¢ = 3.; Xo = 5.0, yo = 2.5, z0 = 2.5. The dagger curve had a

Of range of 10° to 100 °. Before translating, the range of 0 used for generating the star curve was from

-25 ° to 90 °, and the resulting range of 0* was from about 1.1 ° to 76.8 °. Each curve was sampled with

ten points prior to cubic spline interpolation.

4.2 Applying spline() and splint()

The cubic spline interpolation is performed with the splint() and splint() subroutines of [8]. Interpo-

lation of p(O) is described here; the procedure for interpolating z(O) is identical.

The spline() routine calculates a list of second derivatives, p" = d2p/dO 2, to accompany the discrete

0 and p values. The spline can then interpolated (with function splint()) as:

p(O) = Apj + Bpj+, + (' g + Dp_+l (4)

where0j, pj p_,Oj+l Pj+I and ", , , Pj+I are the stored spline parameters at each end of the interval containing
0, and

Oj+l - 0
A -

Oj+l - Oj

0 - Oj
B -

Oj+l - Oj

= 1(.43 - A)(O_+I - Oj)2C

= -_(B 3 - B)(O._+I -D Oj) 2

This interpolation has the following properties:

1. Each segment is a polar cubic polynomial, i.e. a cubic polynomial in polar coordinates.

2. The spline passes through all points in the list of discrete samples.

3. The spline is C2-continuous, meaning it is continuous, and has continuous first and second deriva-
tives.

4. The second derivative, p" is constrained to be zero at the two endpoints of the interpolated curve.

This property makes it a so-called "natural spline."

The first derivative may be calculated as:

dp(O) _ pj+l -- Pj 3A 2 -
dO Oj+l - Oi 6 1 (Oj+_ - Oj)p_ +

3B 2 - 1

6 (0iT 1 --Oj)pj'_l (5)

5 Computing the max-min

Computing the max-min means selecting the longest normal-to-intersect in either direction, from the

dagger curve to the star curve or vice-versa.



5.1 Computing normal-to-intersects

Wedescribethe normal-to-intersectprocedure,for intersoctingthenormal to apoint on the daggercurve
with the star curve. Computing a normal-to-intersect in the reverse direction is identical except for

swapping the curves.

The first step is to find an expression for the line which is normal to the dagger curve at some 9 = 0,_

(n subscript is for "normal point"). Define ¢ as the angle that the dagger curve at (_,_,pt(9,_)) makes

with a curve of constant p through that point.

¢ = arctan \p'_i_,)d0]

The normal line will point in the direction of (0n - ¢).

Next, parameterize this line in terms of e. which is the distance along the line in the direction of

increasing p; the direction along the line of (initially) decreasing p is the -e direction. Letting the l
subscript denote "line," the x and y coordinates of the tlovmal line will be:

xt(e) = +ecx

y_(_) = y,, + ccy

where

and

Next, parameterize p and 8 on this line:

cx = cos(0,,-¢)
cu = sin(a, - ¢) (6)

= X/(.,. + + + %e)2 (7)

St(e) = atan2((xn + ,./),(y,_ + cv_)) (8)

At the point where the normal line intersects the sta_' ('urve, pl(e) = p*(O_(e)). Thus, define

f(e) = p*'(St(e))- pt(e)

our task is to search for e : f(() = 0. This search is perfot'med by applying the zbrac() and zbrent()

subroutines of [8].

5.2 Applying zbrac() and zbrent()

The zbrac() routine brackets a root, meaning it attempts to find an el and e2 such that f(_l) and f(¢2)

have opposite signs. Under this condition, a root is guara nl eed to exist between el and E2. It is initialized

with the interval from 0 to f(0) = p*(8_) -pt(_,,), and expands if necessary until it brackets a root. If it

fails to bracket a root after a specified number of expansi,,ns, then the normal-to-intersect is considered

not to exist for this 0_. The zbren'c () routine contracts _h,.' interval el, E2 surrounding the root until it is

8



sufficientlysmallto providetherequiredprecision.Additionaldetailsof zbrac() andzbrent() arewell
documentedin [8].

The subroutinewhich calculatesf(() uses a value for p*(Oz(e)) even when 01(e) is outside the star

curve's valid range, by extrapolating the cubic equation of the nearer end section of the star curve to the

invalid 01(e). The algorithm checks that the solution makes a valid intersection with the star curve, after

zbrent() returns a root; if the res,llting 0_(e) lies outsid(, the valid bounds of the star curve, then the

normal-to-intersect is considered not to exist for this 0,_, just as if a solution had not been bracketed.

5.3 Selecting the maxin-mm

The normal-to-intersects are computed from a number of locations along the dagger curve, at equal

increments of 0 t, and from a number of locations on the star curve, at equal increments of 0 '_. The

normal-to-intersects for our test curves are shown in Figures 7. For either direction, graphing the normal

to-intersect distances produces an cpsilon profile. Epsilon profiles for our pair of test curves are shown in

Figure 8.

The normal-to-intersect vector with the overall biggesl magnitude (absolute value) is selected as the

max-rain; it is the longest normal-to-intersect vector. The max-rain is represented by its e, and its c_

and cy of Equ. 6 which represent the direction of the normal-to-intersect vector. The direction, in terms

of whether it is a dagger-to-star normal-to-intersect or a star-to-dagger curve normal-to-intersect, is also
noted.

6 Estimating the translation from the max-min

This section describes how the translation (x0, Y0, z0) can be estimated, once the max-min is computed.

6.1 Horizontal translation directly from the max-min

A rough but simple way to estimate x0 and y0 from the max-rain is to use the longest norm,I to-intersect

vector directly as the translation vector. If it was a dagger-to-star normal-to-intersect, then

If the max-min vector was a star-to-dagger normal-to-intersect, then

In our experimental case the max-min was a star-to-dagger normal-to-intersect, starting at 0* = 48.6 °,

and having e = -5.590. The horizontal and vertical components of this vector, when reversed to account

for the star-to-dagger direction, are shown in Table l; Figure 9 shows the resulting match.

6.2 Horizontal translation calculated with averaging

A better estimate of the translation is possible by retaining the direction of the max-min but not its

length; the length of the translation is then estimated as the average of the distance between the curves,
taken in this direction.



Xo Yo Zo
Actual translation 5.0 2.5 2.5

Direct estimation (Sect. 6.1) 5.0215 2.4564 --

Averaged estimation (Sect. 6.2 & 6.3) 4.9898 2.5170 2.4998

Table 1: Summary of estimation results.

In this case,

(9)

(10)

where each A i is a direction-to-intersect measurement from one curve to another; Nt, and N t are the
number of direction-to-intersects which intersected in tlw respective directions. Again, note that the

star-to-dagger measurements are negated for purposes of calculating _o and _]o. Computationally, the

direction-to-intersects are equivalent to normal-to-intersects, but their directions represented by c_ and cv
are pre-specified rather than calculated with Equ. 6 for each measurement.

Direction-to-intersects are calculated from the dagger curve at equal increments of ot, and from the

star curve at the same number of increments. However, only the direction-to-intersects that do intersect

the other curves are included in Nt, and N t, and are used in Eqs. 9 and 10. The averaging acts to filter
out noise present in the max-min calculation.

The results of applying Eqs. 9 and 10 are shown in Tabl,, 1 and Figure 10. The advantages of averaging

the direction-to-intersects over using the max-rain directly are expected to be more dramatic in cases with

more noise than the example in this paper.

6.3 Estimating the vertical translation

This section examines the evaluation of z:0.

The direction of the max-rain effectively provides a rule for point correspondence between the two

curves; Eqs. 9 and 10 in effect measure the x and y components of the average horizontal distance between

corresponding points according to this rule. Once the direction-to-intersects are computed, the vertical

distances are also readily available; the z values at the ba,_e and terminating points of each direction-to-

intersect vector can be computed h'om the 0t and 0* values at these points, z0 is computed as the average

difference between these heights:

In this equation, NA equals Nt, + N.t of Eqs. 9 and 10: _he summation is over all connected direction-

to-interse(its.
The 0_ and 0_x denote the 0 values at the base and terminating points of a direction-to-intersect

vector (not necessarily respectively). These values are readily available during the direction-to-intersect

10



4

computations for Eqs. 9 and 10. Consider for instance a dagger-to-star direction-to-intersect: 04 is pre-

specified, and 0_ is given (from Equ. 8) as:

where

0X = = atan2((x,, + + cyA))

: pt(0[)s n0[
cz and cy represent the direction of the direction-to-inters,,,ts; and A is the direction-to-intersect distance.

Eqs. 9, 10, and 11 are thus calculated simultaneously with each other, one direction-to-intersect at a time.

The results of matching the vertical data are shown in Table 1 and Figure 11. This figure deserves

some explanation: the star curve is still plotted as z*(O _) vs. 0", as in Figure 6. The double-dagger z

function, however, is also plotted as a function of 0", and this requires a transformation relating the two

systems, specifically 0_ to 0". VCe call this the correspondence relationship, denoted with a c subscript,

and the horizontal geometry of Figure 10 indicates that:

0_(0 _) = atan2 ((p*(O*)sin O* - fro), (p*(O*) cos O* - Co)) (12)

The double-dagger curve in Figure 11 is thus Z :_ ÷ 0".(0_+(0")) vs. The "double-dagger curve before vertical

translation" shows the vertical distance between the curves when the horizontal correspondence is applied

to the data without computing -_0- Equ. 9 averaged several measurements of this vertical distance to

calculate z'0, which resulted in the double-dagger curve matching the star curve vertically as well as
horizontally.

7 Conclusion

The terrain matching problem has been described in the context of autonomous vehicle navigation over a
2½-D unstructured terrain, such as the surface of Mars.

We have developed a new approach based on the max-min principle, even though exceptions are

possible when using realistic curves that have noncorresponding endpoints. We use normal-to-intersect

calculations in place of discrepancy measurements to simpli_' the computation. If we do encounter max-

min exceptions in future experiments, a second derivative check will be inserted to insure that the normal-

to-intersect measurements are local minima as opposed to local maxima.

We have described in detail the max-rain calulations using normal-to-intersects, and how the translation

is calculated from the max-rain. The framework of the overall terrain matching algorithm was also
described.

The method introduced here could be classified as "feature matching" as opposed to "iconic matching,"

in the terminology of [9]. It also has a fundamental distinction from the "cost function" approaches, for

instance [4] and [1, sect. 5], which evaluate a cost function between the two sets of data in a grid of trial

vantages, and update the vantage based on those samples of the cost function. Although the method

introduced here may also require repeated iterations of vantage estimation when applied to noisy skylines,

each iteration updates the vantage estimate based on only a single prior estimate, and not a grid of trial
vantages.

Future publications will demonstrate the approach using two whole sets of skylines, instead of a single

pair as described here. The skylines will be generated from a global map, using the algorithm described
in [1, sect. 4].
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